Spindle microtubules and their mechanical associations after micromanipulation in anaphase
نویسندگان
چکیده
Micromanipulation of living grasshopper spermatocytes in anaphase has been combined with electron microscopy to reveal otherwise obscure features of spindle organization. A chromosome is pushed laterally outside the spindle and stretched, and the cell is fixed with a novel, agar-treated glutaraldehyde solution. Two- and three-dimensional reconstructions from serial sections of seven cells show that kinetochore microtubules of the manipulated chromosome are shifted outside the confusing thicket of spindle microtubules and mechanical associations among microtubules are revealed by bent or shifted microtubules. These are the chief results: (a) The disposition of microtubules invariably is consistent with a skeletal role for spindle microtubules. (b) The kinetochore microtubule bundle is composed of short and long microtubules, with weak but recognizable mechanical associations among them. Some kinetochore microtubules are more tightly linked to one other microtubule within the bundle. (c) Microtubules of the kinetochore microtubule bundle are firmly connected to other spindle microtubules only near the pole, although some nonkinetochore microtubules of uncertain significance enter the bundle nearer to the kinetochore. (d) The kinetochore microtubules of adjacent chromosomes are mechanically linked, which provides an explanation for interdependent chromosome movement in "hinge anaphases." In the region of the spindle open to analysis after chromosome micromanipulation, microtubules may be linked mechanically by embedment in a gel, rather than by dynein or other specific, cross-bridging molecules.
منابع مشابه
Micromanipulation studies of chromosome movement. I. Chromosome-spindle attachment and the mechanical properties of chromosomal spindle fibers
We have used micromanipulation to study the attachment of chromosomes to the spindle and the mechanical properties of the chromosomal spindle fibers. Individual chromosomes can be displaced about the periphery of the spindle, in the plane of the metaphase plate, without altering the structure of the spindle or the positions of the nonmanipulated chromosomes. From mid-prometaphase through the on...
متن کاملMicromanipulation Studies of Chromosome Movement
We have used micromanipulation to study the attachment of chromosomes to the spindle and the mechanical properties of the chromosomal spindle fibers . Individual chromosomes can be displaced about the periphery of the spindle, in the plane of the metaphase plate, without altering the structure ofthe spindle or the positions of the nonmanipulated chromosomes . From mid-prometaphase through the o...
متن کاملCheckpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential.
The spindle checkpoint detects errors in kinetochore attachment to microtubules and delays anaphase if attachment is improper. The checkpoint is activated by attachment-sensitive components including Mad2 and certain phosphorylated proteins detected by the 3F3/2 antibody. We have studied Mad2 and 3F3/2 immunofluorescence in grasshopper spermatocytes. As in other cells, unattached kinetochores a...
متن کاملMicrotubules continuously dictate distribution of actin filaments and positioning of cell cleavage in grasshopper spermatocytes.
We systematically examined the impact of microtubules on distribution of actin filaments and positioning of cell cleavage using micromanipulation to progressively alter the symmetric distribution of spindle microtubules in grasshopper spermatocytes. The initial microtubule asymmetry was induced by placing a single chromosome at one spindle pole using a microneedle, which facilitates regional as...
متن کاملMicrotubules are the only structural constituent of the spindle apparatus required for induction of cell cleavage
Structural constituents of the spindle apparatus essential for cleavage induction remain undefined. Findings from various cell types using different approaches suggest the importance of all structural constituents, including asters, the central spindle, and chromosomes. In this study, we systematically dissected the role of each constituent in cleavage induction in grasshopper spermatocytes and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 95 شماره
صفحات -
تاریخ انتشار 1982